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Abstract

A discrete-time Markov process can be compactly modelled as
a dynamic Bayesian network (DBN)—a graphical model with
nodes representing random variables and directed edges indi-
cating causality between variables. Each node has a proba-
bility distribution, conditional on the variables represented by
the parent nodes. A DBN’s graphical structure encodes fixed
conditional dependencies between variables. But in real-world
systems, conditional dependencies between variables may be
unknown a priori or may vary over time. Model errors can
result if the DBN fails to capture all possible interactions be-
tween variables. Thus, we explore the representational frame-
work of adaptive DBNs, whose structure and parameters can
change from one time step to the next: a distribution’s param-
eters and its set of conditional variables are dynamic. This
work builds on recent work in nonparametric Bayesian mod-
eling, such as hierarchical Dirichlet processes, infinite-state
hidden Markov networks and structured priors for Bayes net
learning. In this paper, we will explain the motivation for our
interest in adaptive DBNs, show how popular nonparametric
methods are combined to formulate the foundations for adap-
tive DBNs, and present preliminary results.

KEY WORDS: Directed graphical models, dynamic Bayesian
networks, nonparametric modeling

1. Introduction

Before one can perform any intelligent analysis for a given
problem (e.g., fault diagnosis of a complex machine, predic-
tion of disease spread, source inversion of environmental con-
taminants, etc.), one must first identify the quantities of in-
terest and model these quantities in a coherent representation
that supports efficient reasoning. Currently, many real-world
processes are modelled by static models—models which are
fixed throughout the lifetime of the process. This modeling
paradigm is restrictive because static models often require an
unrealistically abundance of prior knowledge about the pro-
cess, such as:

e Number of random variables that can exist during the
process lifetime

e Number of states that each variable can take on

e A complete enumeration of all possible interactions be-
tween variables

To address this issue, this work explores the approach of
adaptive modeling—in particular, the design of adaptive mod-
els that can hopefully learn new features from data and revise

its representation accordingly. This capability will be espe-
cially useful for resource-bounded computation, since adap-
tive models can enable dynamic allocation of resources to rep-
resent only the features that are relevant to the reasoning task
at hand. In contrast to static models, adaptive models relaxes
the need for an a priori specification of all possible phenom-
ena and interactions that may occur between the variables of
interest. Thus, adaptive models can offer the most advantage
for modeling dynamic processes whose dynamics are not well
understood or may change over time, as in real-world appli-
cations of epidemiological modeling or adversarial modeling,
where it is virtually impossible for any static model to capture
all hypothetical scenarios that may occur between the entities
of interest.

The take-home message of this work is that we need an
adaptive mechanism for modeling dynamic situations. To
address this need, we propose a new representational frame-
work: adaptive dynamic Bayesian networks. Although this
work 1is still in its nascent stage of development and verifi-
cation, it is our hope that this paper may inspire synergistic
efforts and collaborations between other researchers who may
be interested in adaptive modeling.

The organization of this paper is as follows: We explain our
motivation in Section 2 and review the technical background
work in Section 3. Our technical contributions are detailed in
Sections 4 and 5. We present preliminary results in Section 6
and conclude with ideas for future work in Section 7.

2. Motivation

Before we proceed with the technical discussion, we’d like to
emphasize that our goal is to extend beyond model selection
and our notion of adaptation is more than:

o the tweaking of parameters that scale the magnitude of a
dynamic effect; or

e the selection of best scenario from a fixed set of prespec-
ified scenarios.

Our long-term vision for this work is that adaptive models
should facilitate:

e discovery of new hidden variables

e hypotheses of how these newly discovered hidden vari-
ables relate to known (hidden and observed) variables

e proposal of new representational features that may en-
hance the fidelity of the existing model

As a first step, we formulated a wishlist (cf. Table 1) of desir-
able properties for our adaptive model and used this wishlist



Table 1: Wishlist for adaptive models
1. Can accommodate an unbounded number of states
2. Can learn causal relationships between hidden variables
3. Can discover new hidden variables

to guide our development. We began with dynamic Bayesian
networks, a popular static modeling framework for tempo-
ral processes, and incrementally applied nonparametric mod-
eling and Bayes net learning methodologies to morph these
static networks into their adaptive counterparts. At the end,
we achieved in addressing the first two items in this wishlist,
while the last item is still work-in-progress.

3. Preliminaries

We start with explaining the notation that will be used for our
technical discussion. Then, we will define dynamic Bayesian
networks (DBNS), the foundation for this work. To transform a
DBN into its adaptive variant, we will need two concepts: the
nonparametric hidden Markov model and the structured prior.
Thus, we will relate DBNs to hidden Markov models (HMMs),
then illustrate how a HMM can be extended into its nonpara-
metric counterpart—the hierarchical Dirichlet process HMM
that has a countably infinite state space. Lastly, we review the
concept of the structured prior and explain its role in Bayes
net learning.

3.1 Notation

We use uppercase letters to denote random variables and low-
ercase letters to denote their instantiations. For example, given
a binary variable Z € {0,1}, Z can be instantiated as either
z=0orz=1.

We use boldface when referring to a collection or set of sim-
ilar items. For example, given two variables Z; and Zs, the
collection of the two variables is referred to as Z = {77, Z»}.
Boldface is used for vectors as well.

Time will be indexed as a subscript. We use Z; to denote a
random variable Z at a specific time ¢, and Zj.; to denote the
sequence of Z’s state from time O to time ¢. When referring
to a particular variable Z in a collection of variables Z at a
given time ¢, if Z occurs as the n! variable in Z, then the said
variable will be referred to as Z,, ;.

Lastly, we will be referring to the hidden state of a process
at time ¢ as S;. S; may be observed through noisy measure-
ments, which in themselves are represented by observation
variables Y (that take on observed values y;).

3.2 Discrete-time Markov processes

A common approach to modeling temporal processes is to as-
sume that processes evolve and are measured at equally spaced
time steps. This is the key idea behind representing stochastic
dynamic systems as discrete-time Markov processes.

In a discrete-time (first-order) Markov process, the current
state captures all of the memory in the process, so that there is

no additional information in the past that can be used to predict
the future. This (first-order) Markov property is expressed as:
t=1,2,.. @))

p(St|SO:t—1) = p(St |St—1),

In addition, observations depend only on the current state:

p(Yt|SO:t) :p(Yt‘Sf)7 t= 172,... (2)
Thus, a discrete-time Markov process is characterized by two
components: its transition model p(S;|S;—1) and its observa-

tion model p(Y+|S:).

3.3 Dynamic Bayesian networks (DBNs)

Discrete-time Markov processes can be compactly represented
by dynamic Bayesian networks (DBNs) [Dean and Kanazawa,
1989]. A DBN is the temporal version of a Bayesian network
(cf. Figures 1 and 2). Like a Bayesian network, a DBN is
a directed graphical model that represents a particular factor-
ization of the joint distribution of all the variables in a given
stochastic process. Each variable is represented as a node. A
directed edge from node A to node B means that A influ-
ences B, or equivalently, A is a parent of B. Each node n
is associated with a given conditional probability distribution
p(Sn,t/Pa(S,,.)) that encapsulates the conditional probabil-
ity of the variable S, ; given its parents Pa(S, ;). Given the
values of its parents, a node is conditionally independent of its
non-descendant nodes.

Bt|At

@ p(Dt‘Bth)

Figure 1: A Bayesian network

A DBN exploits the fact that, in most multivariable pro-
cesses, each variable is typically influenced only by a local
subset of the system variables. A DBN compactly represents
the transition model p(S;|S;_1) in the factored manner im-
posed by its graphical structure:

P(S¢[S¢-1) Hp Sn.t|Pa(Sn.)) (3
where N is the number of variables in the state S;. The
variables at each time step are assumed to be topologi-
cally sorted, such that Pa(S,;) € {S1¢-1,....,n-1} U
{S1.t,---s Sn—1,}- In other words, a parent of the variable .S,, ;
can be any variable from the previous state S;_1, or a variable
in the current state S; that would not induce any cyclic depen-
dencies.
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Figure 2: Extension of the Bayesian network in Figure 1 into a dynamic Bayesian network (DBN)

Specifically, a DBN is specified by a Bayesian network (that
represents the probability distribution 7 over the initial states)
and a 2-time-slice Bayesian network (that represents the tran-
sition distribution from states at time ¢ — 1 to states at time t).
For any terminal time 7" of a process, the joint distribution of
its state from time O to 7" is given by:

p(So = s, 81 =s1,..., S0 = s7)

= mo(S0) - Hp(st =s¢[St—1=8-1)
t=1
3.4 Hidden Markov Models (HMMs)

A hidden Markov model (HMM) [Rabiner, 1989] can be rep-
resented as a simple DBN, where the state is represented by a
single multinomial variable that can take on one of K dis-
crete values, S; € {1,...,K}. For a time-invariant HMM,
the transition model is specified by a K-by-K transition ma-
trix (where each row defines a 1-by-K probability vector
P(S;11|S: = s¢) for the current state s; to transition to the
next state). Similarly, if the observation is discrete-valued,
such that Y; € {1,..., L}, then the observation model is spec-
ified by a K-by-L emission matrix (where each row defines a
1-by-L probability vector P(Y;|S; = s¢)).

3.5 Hierarchical Dirichlet Processes (HDPS)

We will be taking a nonparametric modeling approach in de-
veloping our adaptive models. A nonparametric model still
has parameters, but is nonparametric in the sense that the set
of possible models extends beyond a particular family of mod-
els that can be indexed by a finite number of parameters. Un-
der this framework, it is assumed that the data are generated
from a nonparametric model, with a potentially infinite num-
ber of parameters, but only a finite subset of these parameters
is manifested in the actual data. Specifying a prior for these
infinite dimensional parameters is tantamount to specifying a
prior for random functions, which requires a stochastic pro-
cess with realizations that are probability distributions.

One such suitable prior is the Dirichlet process (DP) [Fer-
guson, 1973; Antoniak, 1974]. A DP is a random probability
measure on distributions. It is characterized by two param-
eters: a base distribution GGy representing the center of the
process and a precision parameter ooy > 0. A DP is a pop-
ular choice for a nonparametric prior on the parameters of a
mixture model, because each draw G ~ DP(ag, Gp) is (al-
most surely) a discrete distribution, represented as a countable
mixture of point masses [Sethuraman, 1994]:

G=Y wibs, ©
j=1

where

o {2:}52; and {¢;}32, are independent sequences of i.i.d.
random variables with z; ~ Beta(1, o) and ¢; ~ Go;

o {w;}32, are the stick-breaking weights' defined as fol-
lows: wy = 21 and w; = z; Hi;}(l — Zs).

In a situation where observations y; arise from the distribution
K(+;0;), and 8; is the parameter vector associated with the i
component of a random mixture model:

0,|G ~ G (6)
yil@; ~ K(50;) (7

if G ~ DP(ay, Gy), then we have a DP mixture model:
F(56) = [ K(:0)iG(6) ®

where K (+;0) can be any parametric family of distributions
(e.g., Poisson, binomial, Gaussian, Gamma, etc.).

DP mixture models can be combined hierarchically to form
hierarchical Dirichlet process mixture models [Teh et al.,

The procedure for generating w = {wj };‘;1 can be interpreted as itera-
tively breaking off the remaining portions of a unit-length stick. The weights
w defines a probability measure, since Z]oc:1 w; = 1 with probability one.
The resulting stick-breaking distribution is written as w ~ Stick(ap).



2006], for modeling groups of data where each group is char-
acterized by a mixture model and mixture components are
shared between groups. Intuitively, a hierarchical Dirichlet
process (HDP) involves a set of DPs that are coupled via a com-
mon base measure, which in itself is also distributed according
to a DP. Formally, imagine we have J disjoint groups of data
and let y;; be a single observation from the 4™ group. In this
context, Equations (6) and (7) can be extended to define a HDP:

Golv,H ~ DP(y,H) ©)
Gjlao, Gy ~ DP(ay,Go) (10)
0;i|G; ~ G (11)
Yjilji ~ K(30;) (12)

For each j, {0, }72, represent the mixture components of the
4t group and are formulated as i.i.d. random variables dis-
tributed according to G;. In turn, G; (the group-specific base
measure) stems from G (the global base distribution), which
is governed by H (the baseline measure).

3.6 Hierarchical Dirichlet Process HMMs

A HDP-HMM is the nonparametric variant of a HMM whose
(multinomial) hidden variable can take on a countably infi-
nite number of states. Recall from Subsection 3.4 that, in
a traditional HMM, the number of values that S; and Y; can
take on is finite and known a priori, thus it was possible to
represent its transition model and its observation model by
finite-dimensional matrices. If one interprets a state (a sin-
gle value of the multinomial state variable) as a mixture com-
ponent, then a HMM is essentially a dynamic finite mixture
model, where each state corresponds to a mixture component,
and the current state s; serves as the indicator for which row
of the transition matrix is to be used as the mixing proportions
for choosing the next state. Thus, a HMM can be represented
as a set of mixture models, one for each state.

Cast in the light of mixture models, the extension from
a finite-state HMM to an infinite-state HMM is simple: It is
achieved through replacing the state-conditional finite mix-
ture models (that underlie the traditional HMM) with a HDP.
The resulting model is a hierarchical Dirichlet process hid-
den Markov model*> (HDP-HMM) [Teh et al., 2006]. A HDP-
HMM involves a set of DPs, one for each state. These DPs are
coupled through a global DP, which enables the sharing of a
common inventory of possible “next states” that can be reach-
able from each of the “current states”. Formally, each state k
is associated with the transition parameters 7r;, and emission
parameters ¢, which fit into the HDP-HMM’s framework as
follows:

Bly ~ Stick(y) (13)

|, B ~ DP(ao,B) (14)
¢plH ~ H (15)

Selsi—1, (Tr)pey ~ Ts,_, (16)
Yelse, (Pr)per ~ F(3ds,) (17)

%Interested readers may want to refer to [Beal et al., 2002] that describes
a similar representation, the infinite hidden Markov model, which inspired the
work of HDP-HMMSs.

In Equation (13), the top-level state weights are sampled from
the stick-breaking distribution (defined in Footnote 1). For
each state k € {1,2,...}, the transition parameters 7}, and
emission parameters ¢, are drawn from the appropriate dis-
tributions defined in Equations (14) and (15). Then, for each
time step ¢t € {1,...,T'}, the state s; and the observation y;
are generated according to the transition and emission param-
eters, as shown in Equations (16) and (17). A HDP-HMM can
be interpreted as a HDP with a countably infinite number of
groups. In contrast to the traditional HMM, the transition pa-
rameters 7 and emission parameters ¢, of a HDP-HMM are
infinite-dimensional.

3.7 Structured priors

The theme of this paper is structural learning and adapta-
tion for DBNs. Since a DBN is the temporal version of a
Bayesian network, we examine the structural learning work
for Bayesian networks to gain insights into DBN learning, of
which we found the concept of structured priors [Mansinghka
et al., 2006] to be especially applicable.

In [Mansinghka et al., 2006], a structured prior is a prior
distribution over a set of candidate structures (i.e., directed
acyclic graphs or DAGs) for a Bayesian network. Conditional
on the structure, the parameters of the Bayesian network can
be estimated through parameter estimation methods, as de-
scribed in [Heckerman, 1999], therefore we defer the discus-
sion on parameter learning and focus solely on the aspect of
structural learning.

Assuming that variables (represented as nodes in a graph)
belong to particular classes and these classes determine the
prior probability that a directed edge exists between a node
from one class and a node from a different class, one can spec-
ify the structured prior as having three parts:

e Partitioning of variables into classes: z is a N-by-1
“class-assignment” vector that defines the partition of the
N variables, whereby variables with the same class as-
signment have similar causal relationships. This parti-
tion is achieved through the Chinese Restaurant Process?
(CRP) [Pitman, 2002] with hyperparameter p:

['(p) HM
P(z|u :/JM Ym — 1! (18)
(zl1) L(N + ) m:l( )
where M is the number of existing classes and {1/, }M_,

are the class weights, as defined in Footnote 3.

3The CRP draws an analogy between the partitioning of abstract objects
(e.g., variables) and the random (table-sharing) seating arrangement in a Chi-
nese restaurant. Imagine that a restaurant has a countably infinite number of
tables, where each table corresponds to a class in a partition and the table as-

th customer is the class for the ith

signment of the ¢
ith customer can choose to sit at any one of the M occupied tables with prob-
ability proportional to v, , the number of customers already seated at table
m; or, sit at a new table with probability proportional to the hyperparameter
. A CRP is closely related to a DP; the distinction is that a DP is a distribution
over distributions, which induces a partitioning of variables, while a CRP is
the corresponding distribution over partitions.

object. Upon arrival, the



e Ordering of classes: o is a M-by-1 vector, where the m®
element, o,,, represents the order of class m. This order-
ing imposes causal depth between the variables based on
their class assignment. P(0|z) can be specified to encode
a priori knowledge about the ordering or attributed with
a uniform model (i.e., P(o|z) = 7).

e Probability of a directed edge from one class to another:
1 is a M-by M matrix, where each element 7, ., is the
probability of a directed edge from a node of class a to
a node of class b. To avoid acyclic structures, only the
strictly upper triangular entries, {7, o,,0 > 04}, are
non-zero and are distributed according to Beta(A1, A2):

FADT(A2) 5,

(). 3.\ 17040 Aa—1 19
1"(/\1 + )\2) noavob( Mo, b) (19)

P(No,.0,12) =

No., 0. serves as the probability of whether an edge from
variable 7 to variable 7 is present. An edge is treated as
a random (Bernoulli) variable G; ;, where “G; ; = 17
means an edge from ¢ to j is present and “G; ; = 07
means otherwise. In essence, G = {G, ,} defines the ad-
jacency matrix corresponding to a candidate graph for the
unknown Bayesian network:

N N
P(Glz,0,n) = [T ] 7570, (100, 0.,)' "% (20)

i=1j=1

Together, these three components define a probability distri-
bution over possible structures for a Bayesian network. By
applying Markov chain Monte Carlo inference, one can find
approximations to the posterior for z, o and G, and apply this
knowledge to sample candidate structures that are supported
by the observed data.

4. Hierarchical Dirichlet process DBNs (HDNS)

DBNs can be extended in the same spirit that a HMM is ex-
tended to a HDP-HMM, to formulate a nonparametric counter-
part that can represent hidden variables, each with a possibly
infinite number of states. In this framework, we assume that
the number of hidden variables, along with the structure of the
DBN, is fixed and known a priori. What is unknown is the
number of states that each hidden variable can take on. Our
proposal is a new model, the hierarchical Dirichlet process
dynamic Bayesian network (HDN), that can learn the number
of states for each variable from the observed data, thus ad-
dressing the first item on our wishlist (cf. Table 1).

Like a HMM, a DBN can be cast as a finite mixture model:
each state of a hidden variable corresponds to a mixture com-
ponent. However, the mixing proportions for choosing the
next state of a hidden variable now depends not only on the
current state of that variable, but on the current states of all its
parent variables (which can include states from time ¢ as well
as time ¢t — 1). In extending a finite-state DBN to an infinite-
state DBN, we need to take care that this is properly expressed
in the transition and emission parameters of our HDN frame-
work. Let G be the DAG that defines the DBN structure. From

G, we can determine any variable’s set of parents: the current
state of the n'™ variable is denoted by s, and the states of
its parent variables are denoted by the finite-dimensional vec-
tor p,, ,. For each variable n, we have a separate HDP, whose
paraméters are indexed accordingly:

Bl ~ Stick(vn) 2D
7Tnk|050n7 ﬁn ~ DP(O[On, Bn) (22)
Sn,t|pn7ta (Trnk)zozl ~ ﬂ-n,p,,w (23)

If s,, ; is observed through y,, ;, then additionally, we have:

¢n,k‘Hn ~ Hn
Sn,ty (d)nk:)lzc:l ~ Fn(7 gbn,s,m)

(24)
(25)

Yn,t

Adopting the plate notation* [Jordan, 2004] to denote repli-
cation of subgraphs, we present the schematic for the HDN in
Figure 3. In essence, a HDN is the multivariate version of the
HDP-HMVM, in the same way that a DBN generalizes a HMM
from a univariate process. While a HDP-HMM can only repre-
sent univariate processes with a unbounded number of states,
a HDN extends this capability for multivariate processes.

5. Structured priors for HDN learning

The development of HDN in Section 4 assumes that the struc-
ture G is fixed and known a priori. If the structure is unknown,
then G is treated as a random variable and a probability distri-
bution is placed on possible structures. As explained in Sub-
section 3.7, the structured prior offers a way for specifying
such a distribution. In this section, we show how one can ad-
dress the issue of unknown structures within the HDN frame-
work by augmenting the HDN with the appropriate structured
priors. This extension lifts the assumption of fixed/known
structure previously imposed on HDNs and satisfies the sec-
ond requirement on our wishlist (cf. Table 1).
Recall that a DBN is specified by two components:

e a Bayesian network By that defines the probability distri-
bution over the states at an initial time step; structurally,
By encodes only the intra-temporal structure: its edges
originate from and end in the nodes from the same time
slice;

e a2-time-slice Bayesian network 3_, that defines the tran-
sition distribution from current states to next states; struc-
turally, B_, encodes the inter-temporal structure: edges
originate from the previous time slice and end in the cur-
rent time slice.

Analogously, we parallel our HDN learning process by decom-
posing the learning task into two parts:

e define a structured prior for the structure G that contains
the intra-temporal edges

4The subgraph enclosed in a box or plate is replicated by the number of
times indicated by the enclosed limit, located in the lower right corner of the
plate. This notation provides a shorthand for representing diagrammatically
repeated structures over many variables.



n

a

n

a a
5 ]

RS

L

N

Figure 3: The hierarchical Dirichlet process DBN (HDN)

Yn

On

=] >

RS

L

N

Figure 4: The HDN augmented with structure priors (HDN+)
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e define a structured prior for the structure G_, that con-
tains the inter-temporal edges

For this decomposition to work, the intra- and inter-temporal
edges must be decoupled. This means that, for each node, the
presence of any incoming intra-temporal edges must be inde-
pendent of the presence of any inter-temporal edges (i.e., the
existence of any particular intra-temporal edge should not af-
fect the probability of another inter-temporal edge, in relation
to the same node). After Gy and G_, are inferred, the two are
combined to form G, the complete specification of the HDN’s
structure.

The schematic of the augmented HDN (denoted as HDN+)
is presented in Figure 4. Note the two separate structured pri-
ors built on top of the HDN that allow for the representation
of unknown structures within the framework of infinite-state
models. With the appropriate choice of the hyperparameters
governing the structured priors, it is our hope that we can ex-
tend this model to learning time-varying structures. For this
to be achieved, we would probably be needing time-varying
hyperparameters that can capture the evolution of the process
structure. The design of these hyperparameters would be a
difficult but interesting challenge.

6. Preliminary results

We apply the ideas outlined in Sections 4 and 5 to develop a
HDN+ model for a simple multi-facility pipeline. The structure
of the true model (that we used to generate the training data)
is shown in Figure 5, where the adjacency matrix (left) and the
DAG (right) encode the same information about the connectiv-
ity between the nodes. This model is an abstraction of three
facilities: each facility is represented by three heavily coupled
variables (in a clique formation) and the facilities pass materi-
als or information from one to another in a sequential fashion.

We assumed that the number of variables (i.e., nodes in the
network) are known and our goal is to infer the unknown struc-
ture using the time series data from the true model. Following

the Gibbs sampling procedures described in [Mansinghka et
al., 2006] and [Teh et al., 2006], we first sample a candidate
structure G, then use G’s specification of the parent sets to
apply the auxiliary variable method of [Teh et al., 2006] for
inferring the HDP parameters of our model.

We present the results for the learned structures based on
100 trials of this inference procedure. The approximate pos-
terior, constructed from the outcomes of these trials, is shown
in Figure 6. In both the DAG (left) and the adjacency matrix
(right), the intensity of an edge is proportional to the probabil-
ity that the particular edge exists, in which edges with higher
probabilities are shown as darker than those with lower prob-
abilities. In the results, we see that all edges corresponding
to those that are in the true model have non-zero probabili-
ties; some edges are strongly predicted by the inferred pos-
terior while others are only faintly manifested. In the near
future, we hope to report more thoroughly on the learning per-
formance, as a function of different amounts of data and/or
different properties in the training network structures.

7. Conclusion and future work

In summary, this work was motivated by the philosophy
that when dealing with dynamic processes, models should
evolve with the process. Our passion for adaptive models
stemmed from this idea. Clearly, adaptive models offer prac-
tical advantages over static models:

e Unbounded number of features: which allows for a flex-
ible feature space that can adapt with the data

e No need to specify all possible phenomena a priori:
which allows for a cleaner and more frugal representa-
tion that focuses on relevant features and interactions

e Modeling freedom: which lifts restrictive assumptions,
such as constraints on parameters and/or structures, thus
allowing the model to be more faithful to the actual pro-
cess



In this paper, we proposed the framework of HDN+ as a start-
ing point for developing adaptive DBNs. Future directions for
extending this work, ranked in the order of increasing scope,
include:

e Lifting the assumption on having a fixed number of hid-
den variables in the HDN (last item from the wishlist
in Table 1), by augmenting the structural prior to allow
for an infinite number of hidden causes, as explored in
[Wood et al., 2006]

e Incorporating time decay into the HDN framework such
that temporal data from the distant past are more dis-
counted than those from the recent past, by injecting
time-sensitivity in the DP models [Zhu et al., 2005]

e Improving the efficiency and scalability of inference and
learning methods, such as exploring the feasibility of
combining nonparametric modeling with optimization to
enhance the adaptive models

e Inferring the time granularities for different parts of the
process and incorporating this information into the re-
source management for scheduling inference and learn-
ing on the adaptive models, by drawing on insights from
[Saria et al., 2007]
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